Association analysis. Basic concepts

Lecture 08.01

Classification rules: reminder

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

R1: if humidity=normal and windy=false then yes
R2: if outlook=overcast then yes
R3: if temp=hot then no
R4: if outlook=rainy and windy=true then no

- LHS: rule antecedent : in this case - combination of attribute-values
- RHS: rule consequent: in this case - class label

Association rules: no class

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

R1: if temp=cool then humidity=normal

- LHS: rule antecedent : combination of attribute-values
- RHS: rule consequent: combination of attribute-values

Association rules: no class

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

R1: if temp=cool then humidity=normal
R2: if temp=hot then humidity=high

- LHS: rule antecedent: combination of attribute-values
- RHS: rule consequent: combination of attribute-values

The goal: discover relationships, not prediction

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

R1: if temp=cool then humidity=normal
R2: if temp=hot then humidity=high

- The rules - one form of representing relationships between objects which point to their related behavior - appearing in the same observation

Terminology: market basket

Terminology: market basket

TID	Items		
1	Bread, Coke, Milk		
2	Beer, Bread		
3	Beer, Coke, Diaper, Milk		
4	Beer, Bread, Diaper, Milk		
5	Coke, Diaper, Milk		
Item			

Terminology: market basket

TID Items

1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Observation - transaction

Terminology: market basket

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk
Combination of k items $-k$-itemset	

\{Coke, Diaper\} - 2-itemset

If itemset A is a subset of items in transaction t_{i}, we say t_{i} contains A or supports A

Terminology: support count

TID Items

Number of transactions which contain itemset A - support count
support count \{Coke, Diaper\} $=2$

Terminology: support

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk
Fraction of transactions which contain itemset A - support	

Terminology: frequent itemset

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

An itemset whose support is greater than or equal to a minsup threshold - frequent itemset

For minsup=40\% frequent itemsets are:
\{Coke, Diaper\}
\{Bread, Coke, Milk\}

Association rules

- Association Rule
- An implication expression of the form $X \rightarrow Y$, where X and Y are itemsets
- Example:
\{Milk, Diaper $\} \rightarrow\{$ Beer $\}$

TID Items

1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Rule Evaluation Metrics $(X \rightarrow Y)$
- Support (s)
- Fraction of transactions that contain both X and Y
- Confidence (c)
- Measures how often items in Y appear in transactions that contain X

Example:

$\{$ Milk, Diaper $\} \Rightarrow$ Beer

$$
\begin{aligned}
& s=\frac{\sigma(\text { Milk, Diaper,Beer })}{|\mathrm{T}|}=\frac{2}{5}=0.4 \\
& c=\frac{\sigma(\text { Milk, Diaper,Beer })}{\sigma(\text { Milk, Diaper })}=\frac{2}{3}=0.67
\end{aligned}
$$

Why Use Support and Confidence?

Support

- A rule that has very low support may occur simply by chance.
- Support is often used to eliminate random rules.

Confidence

- Measures the reliability of the inference made by a rule.
- For a rule $X \rightarrow Y$, the higher the confidence, the more likely it is for Y to be present in transactions that contain X.
- Confidence provides an estimate of the conditional probability of Y given X.

Market basket analysis: motivation

- Marketing and Sales Promotion:
- Let the rule discovered be
\{Bagels, ... \} --> \{Potato Chips\}
- Potato Chips as consequent

Can be used to determine what should be done to boost its sales.

- Bagels in the antecedent

Can be used to see which products would be affected if the store discontinues selling bagels.

Association Rule Learning Task

- Given a set of transactions T, the goal of association rule learning is to find all rules having
- support \geq minsup threshold
- confidence \geq minconf threshold
- Brute-force approach:
- List all possible association rules
- Compute the support and confidence for each rule
- Prune rules that fail the minsup and minconf thresholds
\Rightarrow Computationally prohibitive!

Brute-force approach:

how many rules R

- Suppose there are d items. We first choose k of the items to form the left-hand side of the rule. There are $C_{d, k}$ ways for doing this.
- Now, there are $C_{d-k, j}$ ways to choose the remaining items to form the right-hand side of the rule, where $1 \leq i \leq d-k$.

We applied:

$$
R=\sum_{k=1}^{d}\binom{d}{k} \sum_{i=1}^{d-k}\binom{d-k}{i} \quad \sum_{i=1}^{n}\binom{n}{i}=2^{n}-1
$$

We also have that :

$$
(1+x)^{d}=\sum_{i=1}^{d}\binom{d}{i} x^{d-i}+x^{d}
$$

$$
=\sum_{k=1}^{d}\binom{d}{k} 2^{d-k}-\sum_{k=1}^{d}\binom{d}{k}
$$

For $x=2$
$=\sum_{k=1}^{d}\binom{d}{k} 2^{d-k}-\left(2^{d}-1\right)$
$3^{d}=\sum_{i=1}^{d}\binom{d}{i} 2^{d-i}+2^{d}$
Therefore $R=3^{d}-2^{d}-\left(2^{d}-1\right)=3^{d}-2^{d+1}+1$

Brute-force approach

- $R=3^{d}-2^{d+1}+1$
- For $d=6$, $3^{6}-2^{7}+1=602$ possible rules
- However, 80% of the rules are discarded after applying minsup $=20 \%$ and minconf $=50 \%$, thus making most of the computations wasted.

TID	Items
$\mathbf{1}$	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
$\mathbf{5}$	Bread, Milk, Diaper, Coke

An initial step toward improving the performance: decouple the support and

- So, it would be useful to prune the confidence requirements. rules early without having to compute their support and confidence values.

Learning Association Rules

TID	Items
$\mathbf{1}$	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

\{Milk,Diaper\} \rightarrow \{Beer\} (s=0.4, c=0.67) \{Milk,Beer\} \rightarrow \{Diaper\} (s=0.4, c=1.0)
$\{$ Diaper,Beer $\}$ \{Milk\} ($s=0.4, c=0.67$)
$\{$ Beer $\} \rightarrow\{$ Milk,Diaper $\}(s=0.4, c=0.67)$
$\{$ Diaper\} \rightarrow \{Milk,Beer\} (s=0.4, c=0.5)
\{Milk\} \rightarrow \{Diaper,Beer\} (s=0.4, c=0.5)

Observations:

- All the above rules are binary partitions of the same itemset:
\{Milk, Diaper, Beer\}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

> If the itemset is infrequent, then all six candidate rules can be pruned immediately without us having to compute their confidence values.

Learning Association Rules

- Two-step approach:

1. Frequent Itemset Generation

- Generate all itemsets whose support \geq minsup (these itemsets are called frequent itemset)

2. Rule Generation

- Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset (these rules are called strong rules)

We focus first on frequent itemset generation.

Step 1

FREQUENT ITEMSET GENERATION

Candidates for frequent itemsets

Frequent Itemset Generation:

brute force

- Each itemset in the lattice is a candidate frequent itemset
- Count the support of each candidate by scanning the database
- Match each transaction against every candidate
- Complexity ~ $O(N M w)=>$ Expensive since $M=2^{d}!!!$
- w is max transaction width.

Transactions

Frequent itemset generation: Apriori algorithm

- The name Apriori is based on the fact that we use prior knowledge about k-itemsets in order to prune candidate $k+1$-itemsets
- The idea: level-wise processing
- find frequent 1-itemsets: F_{1}
$-F_{1}$ is used to find F_{2}
$-F_{k}$ is used to find F_{k+1}
- The efficiency is based on anti-monotone property of support: if a set cannot pass the test, all its supersets will fail the same test

Anti-monotone property of support

- All subsets of a frequent itemset A must also be frequent
- If itemset A appears in less than minsup fraction of transactions, then itemset A with one more item added cannot occur more frequently than A. Therefore, if A is not frequent, all its supersets are not frequent as well

Illustrating Apriori Principle

Found to be Infrequent

Illustrating Apriori Principle

Item	Count
Bread	$\mathbf{4}$
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Minimum support count $=3$

If every subset is considered,

$$
{ }^{6} \mathrm{C}_{1}+{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{3}=41
$$

With support-based pruning,

$$
6+6+1=13
$$

Itemset	Count
\{Bread,Milk,Diaper\}	$\mathbf{3}$

With the Apriori principle we need to keep only this triplet, because it's the only one whose subsets are all frequent.

Apriori Algorithm

- Let $k=1$
- Generate set F_{1} of frequent 1-itemsets
- Repeat until F_{k} is empty
- $k=k+1$
- Generate length- k candidate itemsets C_{k} from length- $k-1$ frequent itemsets F_{k-1}
- Prune candidate itemsets containing subsets of length-k1 that are infrequent
- Count the support of each candidate in C_{k} by scanning the Dataset and eliminate candidates that are infrequent, leaving only those that are frequent - F_{k}

Candidate generation and prunning

Many ways to generate candidate itemsets.
An effective candidate generation procedure:

1. Should avoid generating too many unnecessary candidates.

- A candidate itemset is unnecessary if at least one of its subsets is infrequent.

2. Must ensure that the candidate set is complete,

- i.e., no frequent itemsets are left out by the candidate generation procedure.

3. Should not generate the same candidate itemset more than once.

- E.g., the candidate itemset $\{a, b, c, d\}$ can be generated in many ways---
- by merging $\{a, b, c\}$ with $\{d\}$,
- $\{c\}$ with $\{a, b, d\}$, etc.

Generating C_{k+1} from F_{k} : brute force

- A bruteforce method considers every frequent k-itemset as a potential candidate and then applies the candidate pruning step to remove any unnecessary candidates.

Candidate Generation

$F_{k-1} \times F_{1}$ Method

- Extend each frequent ($k-1$)itemset with a frequent 1-itemset.
- Is it complete?

The procedure is complete because every frequent k-itemset is composed of a frequent ($k-1$)itemset and a frequent 1-itemset.

Frequent
2-itemset

Itemset
\{Beer, Diapers $\}$
\{Bread, Diapers $\}$
\{Bread, Milk $\}$
\{Diapers, Milk $\}$

- However, it doesn't prevent the same candidate itemset from being generated more than once.
E.g., \{Bread, Diapers, Milk\} can be generated by merging
- \{Bread, Diapers\} with \{Milk\},
- \{Bread, Milk\} with \{Diapers\}, or
- \{Diapers, Milk\} with \{Bread\}.

Lexicographic Order

- Avoid generating duplicate candidates by ensuring that the items in each frequent itemset are kept sorted in their lexicographic order.
- Each frequent ($k-1$)-itemset X is then extended with frequent items that are lexicographically larger than the items in X.
- For example, the itemset \{Bread, Diapers\} can be augmented with \{Milk\} since Milk is lexicographically larger than Bread and Diapers.
- However, we don't augment \{Diapers, Milk\} with \{Bread\} nor \{Bread, Milk\} with \{Diapers\} because they violate the lexicographic ordering condition.
- Is it complete?

Lexicographic Order - Completeness

- Is it complete?

Let $\left(i_{1}, \ldots, i_{k-1}, i_{k}\right)$ be a frequent k-itemset sorted in lexicographic order.

Since it is frequent, by the Apriori principle, $\left(i_{1}, \ldots, i_{k-1}\right)$ and $\left(i_{k}\right)$ are frequent as well.

$$
\left(i_{1}, \ldots, i_{k-1}\right) \in F_{k-1} \text { and }\left(i_{k}\right) \in F_{1} .
$$

Since, $\left(i_{k}\right)$ is lexicographically bigger than i_{1}, \ldots, i_{k-1}, we have that $\left(i_{1}, \ldots\right.$, $\left.i_{k-1}\right)$ would be joined with $\left(i_{k}\right)$ for giving $\left(i_{1}, \ldots, i_{k-1}, i_{k}\right)$ as a candidate k itemset.

Still too many candidates...

- E.g. merging \{Beer, Diapers\} with \{Milk\} is unnecessary because one of its subsets, \{Beer, Milk\}, is infrequent.
- For a candidate k-itemset to be worthy,
- every item in the candidate must be contained in at least k-1 of the frequent ($k-1$)-itemsets.
- \{Beer, Diapers, Milk\} is a viable candidate 3-itemset only if every item in the candidate, including Beer, is contained in at least 2 frequent 2 itemsets.
Since there is only one frequent 2-itemset containing Beer, all candidate 3-itemsets involving Beer must be infrequent.
- Why?

Because each of k-1-subsets containing an item must be frequent.

$\mathrm{F}_{k-1} \times \mathrm{F}_{1}$

Frequent 2-itemset

Itemset
\{Beer, Diapers $\}$
\{Bread, Diapers $\}$
\{Bread, Milk $\}$
\{Diapers, Milk $\}$

Candidate Generation

Itemset
Beer, Diapers, Bread $\}$
\{Beer, Diapers, Milk $\}$
\{Bread, Diapers, Milk $\}$
\{Bread, Milk, Beer $\}$

Candidate
Pruning
Itemset
\{Bread, Diapers, Milk\}

$\mathrm{F}_{k-1} \times \mathrm{F}_{k-1}$ Method

- Merge a pair of frequent $(k-1)$-itemsets only if their first $k-2$ items are identical.
- E.g. frequent itemsets \{Bread, Diapers\} and \{Bread, Milk\} are merged to form a candidate 3itemset \{Bread, Diapers, Milk\}.
- We don't merge \{Beer, Diapers\} with \{Diapers, Milk\} because the first item in both itemsets is different.
- Indeed, if \{Beer, Diapers, Milk\} is a viable candidate, it would have been obtained by merging \{Beer, Diapers\} with \{Beer, Milk\} instead.
- This illustrates both the completeness of the candidate generation procedure and the advantages of using lexicographic ordering to prevent duplicate candidates.

Pruning?

- Because each candidate is obtained by merging a pair of frequent $(k-1)$ itemsets, an additional candidate pruning step is needed to ensure that the remaining k - 2 subsets of k-1 elements are frequent.

$\mathrm{F}_{k-1} \times \mathrm{F}_{k-1}$

Example: Apriori candidate generation

Find all frequent itemsets from the following data.
Min support count threshold=2

Pizza toppings dataset

TID	Extra cheese	Onions	Peppers	Mushrooms	Olives	Anchovy
1	1	1			1	
2			1	1		
3		1				1
4	1		1			
5	1	1		1	1	
6	1	1		1		

Binary data format

2. Count 1-item frequent itemsets

TID	A	B	C	D	E	F
1	1	1			1	
2			1	1		
3		1				1
4	1			1		
5	1	1		1	1	
6	1	1		1		
	4	4	1	4	2	1
Support count				at		

3. Generate candidate 2 -itemsets

	A	B	D	E
A				
B				
D				
E				

```
Candidate 2-itemsets C2
{A,B} {A,D} {A,E}
{B,D}{B,E}
{D,E}
```


4. Scan DB, count candidates

2 ways of candidate generation

a) $\mathrm{C}_{\mathrm{k}}=\mathrm{F}_{\mathrm{k}} \times \mathrm{F}_{1}$
b) $\mathrm{C}_{\mathrm{k}}=\mathrm{F}_{\mathrm{k}-1} \times \mathrm{F}_{\mathrm{k}-1}$

In both cases itemsets are lexicographically sorted: we may extend existing itemset only with an item which is lexicographically largest among all items in $\mathrm{F}_{\mathrm{k}-1}$

5a. Generate $\mathrm{C}_{3}=\mathrm{F}_{2} \times \mathrm{F}_{1}$

Frequent 2-itemsets F_{2}
$\{A, B\}\{A, D\}\{A, E\}$
$\{B, D\}\{B, E\}$
Frequent 1-itemsets: $\{A\},\{B\},\{D\},\{E\}$

$F_{2} \backslash F_{1}$	A	B	D	E
A, B				
A, D				
A, E				
B, D				
B, E				

5a. Generate $\mathrm{C}_{3}=\mathrm{F}_{2} \times \mathrm{F}_{1}$

Frequent 2-itemsets F_{2}
$\{A, B\}\{A, D\}\{A, E\}$
$\{B, D\}\{B, E\}$

Frequent 1-itemsets:
$\{A\},\{B\},\{D\},\{E\}$

$F_{2} \backslash F_{1}$	A	B	D	E
A, B				
A, D				
A, E				
B, D				
B, E				

Candidate 3-itemsets C_{3} $\{A, B, D\}\{A, B, E\}\{A, D, E\}\{B, D, E\}$

5a. Prune C_{3} before counting

Frequent 2-itemsets F_{2}
$\{A, B\}\{A, D\}\{A, E\}$
$\{B, D\}\{B, E\}$
Frequent 1-itemsets:
$\{A\},\{B\},\{D\},\{E\}$

$F_{2} \backslash F_{1}$	A	B	D	E
A, B				
A, D				
A, E				
B, D				
B, E				

Candidate 3-itemsets C_{3}
$\{A, B, D\}\{A, B, E\}\{A, D, E\}\{B, D, E\}$

5b. Generate $\mathrm{C}_{3}=\mathrm{F}_{2} \times \mathrm{F}_{2}$

Frequent 2-itemsets F_{2}
$\{A, B\}\{A, D\}\{A, E\}$
$\{B, D\}\{B, E\}$

The first item should be identical in order to join

$F_{2} \backslash F_{2}$	A, B	A, D	A, E	B, D	B, E
A, B					
A, D					
A, E					
B, D					
B, E					

5b. Prune C_{3} before counting

Frequent 2-itemsets F_{2}
$\{A, B\}\{A, D\}\{A, E\}$
$\{B, D\}\{B, E\}$

The first item should be identical in order to join

$F_{2} \backslash F_{2}$	A, B	A, D	A, E	B, D	B, E
A, B					
A, D					
A, E					
B, D					
B, E					

Candidate 3-itemsets C_{3}
$\{A, B, D\}\{A, B, E\}\{A, D, E\}\{B, D, E\}$

6. Count candidates C_{3}

TID	A	B	C	D	E	F
1	1	1			1	
2			1	1		
3		1				1
4	1		1			
5	1	1		1	1	
6	1	1		1		

$F_{2} \backslash F_{1}$	A	B	D	E
A, B			2	2
A, D				
A, E				
B, D				
B, E				

Frequent 3-itemsets F_{3} $\{A, B, D\}\{A, B, E\}$

8a. Generate candidates $\mathrm{C}_{4}=\mathrm{F}_{3} \times \mathrm{F}_{1}$

$F_{3} \backslash F_{1}$	A	B	D	E
A, B, D				
A, B, E				

The only candidate 4-itemset:
$\{A, B, D, E\}$
Do we need to count its support?
Can it be pruned?

Solution: all frequent k-itemsets, $k>=2$

- $\{A, B\}\{A, D\}\{A, E\}\{B, D\}\{B, E\}$
- $\{\mathrm{A}, \mathrm{B}, \mathrm{D}\}\{\mathrm{A}, \mathrm{B}, \mathrm{E}\}$

A	B	C	D	E	F
Extra cheese	Onions	Peppers	Mushrooms	Olives	Anchovy

- \{Cheese, Onions\} \{Cheese, Mushrooms\} \{Cheese, Olives\} \{Onions, Mushrooms\} \{Onions, Olives\}
- \{Cheese, Onions, Mushrooms\} \{Cheese, Onions, Olives\}

Apriori Algorithm. Summary

- Generate F_{1}
- Let $k=1$
- Repeat until F_{k} is empty
- $k=k+1$
- Generate C_{k} from F_{k-1}
- Prune C_{k} containing subsets that are not in F_{k-1}
- Count support of each candidate in C_{k} by scanning DB
- Eliminate infrequent candidates, leaving F_{k}

Reduces the number of candidates to be counted against the dataset

To make counting of candidates faster

- we use hash tree

Step 2

RULE GENERATION

Rule Generation

- An association rule can be extracted by partitioning a frequent itemset Y into two nonempty subsets, X and $Y-X$, such that

$$
X \rightarrow Y-X
$$

satisfies the confidence threshold.

- Each frequent k-itemset, Y, can produce up to 2^{k} - 2 association rules
- ignoring rules that have empty antecedents or consequents.

Rule Generation

Example

Let $Y=\{1,2,3\}$ be a frequent itemset.
Six candidate association rules can be generated from Y :
$\{1,2\} \rightarrow\{3\}$,
$\{1,3\} \rightarrow\{2\}$,
$\{2,3\} \rightarrow\{1\}$,
$\{1\} \rightarrow\{2,3\}$,
$\{2\} \rightarrow\{1,3\}$,
$\{3\} \rightarrow\{1,2\}$.

Confidence, unlike support is not anti-monotone: Knowing that $c(X->Y)<$ minConfidence, we cannot tell whether
$c\left(X^{\prime}->Y^{\prime}\right)<$ minConfidence or $c\left(X^{\prime}->Y^{\prime}\right)>$ minConfidence, for $X^{\prime} \subseteq X$ and $Y^{\prime} \subseteq Y$

Do we need to compute confidence for all possible rules for each frequent itemset Y ?

Confidence-based rule pruning

Theorem.

If a rule $X \rightarrow Y-X$ does not satisfy the confidence threshold, then any rule $X^{\prime} \rightarrow Y-X^{\prime}$, where X^{\prime} is a subset of X, cannot satisfy the confidence threshold as well.

Confidence-based rule pruning

Proof.

Consider the following two rules:
$X^{\prime} \rightarrow Y-X^{\prime}$ and $X \rightarrow Y-X$, where $X^{\prime} \subseteq X$.

The confidence of the rules are $\sigma(Y) / \sigma\left(X^{\prime}\right)$ and $\sigma(Y) / \sigma(X)$, respectively.
Since X^{\prime} is a subset of $X, \sigma\left(X^{\prime}\right) \geq \sigma(X)$. Therefore, the former rule cannot have a
 higher confidence than the latter rule.

Confidence-Based Pruning

- Observe that:
$X^{\prime} \subseteq X$ implies that $Y-X^{\prime} \supseteq Y-X$

Algorithm for rule generation

- Initially, all the high-confidence rules that have only one item in the rule consequent are extracted.
- These rules are then used to generate new candidate rules.
- For example, if
- acd $\} \rightarrow\{b\}$ and $\{a b d\} \rightarrow\{c\}$ are high-confidence rules, then the candidate rule $\{a d\} \rightarrow\{b c\}$ is generated by merging the consequents of both rules.

Example

Item	Count
Bread	Items
Coke	$\mathbf{4}$
Milk	2
Beer	4
Diaper	3
Eggs	4

Itemset	Count	Pairs (2-itemsets)
\{Bread,Milk	3	
\{Bread,Beer\}	2	
\{Bread,Diaper\}	3	
\{Milk,Beer\}	2	
\{Milk,Diaper\}	3	
\{Beer,Diaper\}	3	

Itemset	Count
\{Bread,Milk,Diaper\}	$\mathbf{3}$

High-confidence rules with 1 item in consequent
$\{$ Bread,Milk\} \rightarrow \{Diaper\} (confidence $=3 / 3$) threshold=50\%
$\{$ Bread,Diaper\} \rightarrow \{Milk\} (confidence $=3 / 3$)
$\{$ Diaper,Milk $\} \rightarrow\{$ Bread $\}$ (confidence $=3 / 3$)

Example

Merge:
\{Bread,Milk\} \rightarrow \{Diaper\}
$\{$ Bread,Diaper\} \rightarrow \{Milk\}
$\{$ Bread $\} \rightarrow\{$ Diaper, Milk $\} \quad$ (confidence $=3 / 4$)

